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2
Scaling, Fractals, and

Chaos

Georg Cantor (1845–1918), a
celebrated German mathematician,
founded set theory and recognized
the distinction between countably
infinite and uncountably infinite
sets, such as the sets of rational and
real numbers, respectively.

The French mathematicianHenri
Poincaré (1854–1912)established
that certain deterministic nonlinear
dynamical systems exhibit an acute
sensitivity to initial conditions; this
characteristic is now recognized as
a hallmark of deterministic chaos.
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2.1 DIMENSION

The word “dimension,” at least among the technically inclined, generally conjures
up an image of a familiar elemental shape such as a line or rectangle. These objects
have dimensions that correspond to the measurements used to quantify them: meters
and square meters, respectively. Table 2.1 presents four representative “Euclidean”
objects along with their dimensions (Mandelbrot, 1982).

Object Measurement Dimension

Point meters0 0

Line meters1 1

Square meters2 2

Cube meters3 3

Table 2.1 Representative objects: measurements and dimensions.

The union of two objects that have a particular dimension is characterized by that
same dimension. Thus, any finite number of points retains a dimension of zero, and
three squares connected end to end as a whole maintain a dimension of two. What
happens to the dimension as we deform the objects, converting a line into a curve,
say, or a square into an ellipse? Common sense suggests that the dimension of an
object is robust in the face of such manipulations, and topological theory bears this
out. A curve in three-dimensional space, such as a helix, maintains a dimension of
unity since uncoiling the helix yields a line of that dimension.

The foregoing discussion illustrates a general property: the dimension of an object
cannot exceed the dimension of the space in which it resides (theEuclidian dimen-
sion). An infinite collection of points immediately adjacent to each other yields a
curve, and one can generate a circle from the union of all possible points equidistant
from a given point. In both cases, the component objects have a dimension smaller
than that of the space. However, one can form a square from a collection of smaller
squares, and all squares have a dimension of two. These examples lead to another
property: the dimension of each member of a group of objects (the topological
dimension) cannot exceed the dimension of the object formed by their union.

Taken together, the two properties reveal that a collection of objects of a particu-
lar dimension, embedded in an object with another dimension, will have an overall
dimension that lies between the two. For example, a collection of points (dimension
zero) lying within a square (dimension two) can yield a line (dimension one). Yet, a
different collection of points could yield a square of smaller size (dimension two), or
a single point (dimension zero). In all cases, however, the dimension of the resulting
object lies between zero and two inclusive, in accord with the properties set forth
above.
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12 SCALING, FRACTALS, AND CHAOS

2.1.1 Capacity dimension

Although the concept of dimension as discussed above has intuitive appeal, it is im-
portant to develop a more rigorous approach for quantifying dimension. We illustrate
one measure, initially introduced by Pontrjagin & Schnirelmann (1932), called the
capacity dimensionor box-counting dimension(this technique is discussed in more
detail in Sec. 3.5.4). Imagine an ellipse (including its interior) in a plane; we know
this object has a dimension of two. Suppose we draw a grid over the ellipse and the
surrounding region, yielding a collection of square boxes, and then count the number
of squares that overlap at least one point in the ellipse. For squares of a given edge
size ε, we obtain a numberM(ε). (The precise value of this number depends on
the alignment of the grid with respect to the ellipse, but this fact does not affect the
following argument.)

Now repeat the process with squares half the size of the original ones. The number
of squares required to cover the ellipse will increase roughly by a factor of four, since
four new squares cover one of the original ones. Thus,M(ε/2) ≈ 4M(ε). In the
limit, as the size of the squares decreases towards zero, we find

M(ε) → Cε−2, (2.1)

where the constantC represents the area of the ellipse, and the alignment of the grid
does not affect this result. To extract the exponent from Eq. (2.1), we first take the
logarithm, which yields a relation linear in the exponent. Dividing by the logarithm of
the inverse box size and taking the limit for small boxes yields the desired exponent:

lim
ε→0

ln
[
M(ε)

]

ln(1/ε)
= 2, (2.2)

which coincides with the dimension of an ellipse. This suggests a general method for
obtaining the capacity dimension that will report the correct exponent even when it
may not be readily apparent in the functional form ofM(ε).

Now suppose that we repeat the process with a curve in a plane. In this case, the
number of squares required increases linearly with1/ε, whereupon Eq. (2.2) yields
a value of unity. Similarly, a finite collection ofn points requires no more thann
squares, no matter how smallε becomes, resulting in a dimension of zero.

In general, the box-counting technique of determining the dimension proceeds by
covering the set in question with “boxes,” namely cubes, squares, line segments, or
other forms, depending on the space within which the shape lies. The relationship
between the number of boxes that contain part of the set and the size of those boxes,
as the size decreases to zero, determines the capacity dimensionD0 of the set:

M(ε) → Cε−D0 . (2.3)

Thus far, the outcome agrees with our intuition about dimension. When applied to
fractals, however, we will see that this approach leads to noninteger values, although
it is always bounded from above by the Euclidian dimension, and from below by the
topological dimension.
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2.2 SCALING FUNCTIONS

Fractals turn out to have close connections to the scaling behavior observed in some
functions. A function is said to “scale” when shrinking or stretching both axes (by
possibly different amounts, neither equal to unity) yields a new graph that coincides
with the original. Scaling leads mathematically to power-law1 dependencies in the
scaled quantities, as we now proceed to show.

Consider a functionf that depends continuously on the scales over which we
take measurements. Suppose that changing the scale by any factora effectively
changes the function by some other factorg(a), which depends on the factora but is
independent of the original scales:

f(as) = g(a) f(s). (2.4)

The only nontrivial solution of this scaling equation for real functions and arguments,
and for arbitrarya ands , is (see Prob. 2.5)

f(s) = b g(s), (2.5)

with
g(s) = sc (2.6)

for some constantsb andc (Lowen & Teich, 1995; Rudin, 1976). Equations (1.1) and
(2.3) provide examples of this relationship.

Restrictinga to a fixed value in Eq. (2.4) yields a larger set of possible solutions
(Shlesinger & West, 1991):

g(s; a) = sc cos[2π ln(s)/ ln(a)]. (2.7)

2.3 FRACTALS

The concept of a fractal involves three closely related characteristics, each of which
could serve as a definition in its own right. Indeed, a variety of definitions for fractals
exist (Mandelbrot, 1982). Furthermore, fractals can bedeterministicorrandom. They
can also bestatic, such as the Icelandic coastline, or arise from adynamical process
such as Brownian motion.

First, fractals possess a form of self-scaling: parts of the whole can be made to fit
to the whole in some nontrivial way by shifting and stretching. If stretching equally
in all directions yields such a fit, then an object is said to be self-similar. If the fit
requires anisotropic stretching, then the object is said to be self-affine (Mandelbrot,

1 Power-law functions have many aliases, including “algebraic,” “hyperbolic,” and “allometric.” When
applied to distributions, the term “heavy-tailed” often (but not always) refers to the same functional form.
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14 SCALING, FRACTALS, AND CHAOS

1982). For deterministic fractals, the fit is exact. Random fractals, in contrast, fit
statistically; transformed parts resemble the whole and have similar probabilistic
characteristics, although they do not precisely coincide with it. The coast of Iceland,
for example, contains similar features over a range of sizes. As illustrated in Fig. 1.1,
what would appear to be a simple bay on a large-scale (coarse-grained) map turns
into a meandering connection of inlets and other invaginations when displayed more
finely. Examining a length of coastline on a map (without intimate knowledge of
the particular section under study) does not provide information about the scale of
the map despite knowledge of the size of the entire object, in this case Iceland. In
contrast, examining of a section of nonfractal object, such as a circle, readily yields
the scale in terms of the size of the object.

Second, the statistics that are used to describe fractals scale with the measurement
size employed. For example, the length of the east coast of Iceland follows the form
of Eqs. (2.5) and (2.6) with an empirical fractal exponentc ≈ −0.30, as shown in
Prob. 1.1. Statistics with power-law forms are thus closely related to fractals. Indeed,
we often highlight this connection by presenting various measures using logarithmic
axes for both the ordinate and abscissa; power-law functions become straight lines on
such doubly logarithmic graphs and their slopes provide the power-law exponents.
This characteristic of fractals proves quite useful.

Third, the fractal exponent that corresponds to a particular statistic, one of the
generalized dimensions (see Sec. 3.5.4), assumes a noninteger value. As their size
decreases, the number of boxes required to cover the Icelandic coastline increases in
such a way that the capacity dimensionD0 ≈ 1.30 (see Secs. 2.1 and 3.5.4). This
scaling exponent assumes a noninteger value lying between that of a line (D0 = 1)
and that of a plane (D0 = 2).

2.3.1 Fractals, scaling, and long-range dependence

Fractal behavior, such as an object containing smaller copies within itself, can extend
down to arbitrarily small sizes in an abstract mathematical construct. However, real-
world fractals generally exhibit minimum sizes beyond which fractal behavior is not
obeyed. For example, decreasing the length scale used to measure the length of a
coastline will eventually lead to a breakdown in scaling behavior. The geological
forces at work over kilometer scales differ from those operating over much smaller
length scales, leading to different appearances over these smaller lengths. Certainly
at a scale corresponding to individual atoms, the emergent features are expected to
bear little resemblance to those at macroscopic length scales.

There are also limits at large scales. Fractal behavior can have a maximum scale,
one that often corresponds to the size of the fractal object itself. The minimum and
maximum scales that bound fractal behavior are known as thelower cutoff (or inner
cutoff ) and theupper cutoff (or outer cutoff ), respectively.

Moreover, any data set collected from a real-life physical or biological experiment
will perforce have lower and upper cutoffs, corresponding to the resolution limits of
the measurement apparatus and the extent of the entire data set, respectively. These
lower and upper measurement cutoffs impose limits on observable fractal behavior
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that sometimes prove more restrictive than those of the fractal object under study
itself. In the case of the Icelandic coastline portrayed in Fig. 1.1, for example, the
resolution of the map from which the measurement is constructed (0.694 km), which
is determined by the edge length of the minimum pixel size (see Prob. 1.1), imposes
a lower cutoff. An upper cutoff is imposed by the size of the island itself.

Generating a point process from a rate (see Chapter 4) necessarily involves some
loss of information, and can also set an effective minimum scale. In both the dou-
bly stochastic and integrate-and-reset point processes considered in Chapter 4, for
example, fractal features present in the rate process over time scales shorter than the
average time between events will be greatly attenuated in the resultant point process.

In a more rigorous mathematical context, fine distinctions are sometimes drawn
between fractals and scaling (Flandrin, 1997; Flandrin & Abry, 1999). The term
”scaling” is used when both lower and upper cutoffs exist, “fractal” denotes objects
for which no small-size cutoff exists, and “long-range dependence” corresponds to
the lack of a large-size cutoff.2 Since essentially all of the applications we consider
derive from limited measurements, our discussion might be more properly framed in
terms of scaling rather than fractal behavior. Following common usage, however, we
generally do not make this distinction. The Lévy dust, considered in Sec. 4.7, and the
zero crossings of ordinary and fractional Brownian motion, considered in Sec. 6.1,
are the sole exceptions. These two collections of points, which, properly speaking,
are not point processes, are fractal in the strict sense of the term.

2.3.2 Monofractals and multifractals

The scaling behavior discussed thus far involves a single stretching or shifting rule, and
a single exponent for each statistic. For some objects, the rule and exponents depend
on the position within the object, or on the size of the component. Each such object
can thus contain a range of fractal behaviors, and is therefore called amultifractal
(Mandelbrot, 1999; Sornette, 2004). In this context, a simpler fractal object described
in our earlier discussions is called amonofractal. Although examples of multifractals
can be found, in practice relatively few point-process data sets contain sufficient
information to accurately characterize their multifractal spectrum.

Perhaps the best method for attempting such a characterization leads to a mul-
tifractal spectrum by simulating a number of surrogate data sets with different pa-
rameters, and selecting the best fitting parameters as estimates of the multifractal
behavior (Roberts & Cronin, 1996). This method yields good accuracy with as few
asN = 100 points. However, its inherent parametric approach limits its usefulness
in general, since the algorithm requiresa priori knowledge of the form of the mul-

2 More precisely, a process is said to have long-range dependence when its autocorrelation has an infinite
integral (for continuous-time processes) or an infinite sum (for discrete-time processes) (Cox, 1984).
Theoretically, a process could have long-range dependence without exhibiting power-law behavior, but
this is uncommon.
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16 SCALING, FRACTALS, AND CHAOS

tifractal spectrum. Indeed, it estimates only two parameters from the data set rather
than an arbitrary form for the multifractal spectrum.

Finally, such methods typically require that the point processes themselves, rather
than merely the rates of these processes, exhibit (multi)fractal behavior. Such fractal
point processes (see Sec. 5.5.1) form an important subclass of the class of fractal-
based point processes (see Sec. 5.5) that we explore, but they do not describe a large
number of data sets.

As a consequence of these limitations, we concentrate principally on monofractals
in this book. Computer network traffic is a notable exception: the availability of
extensive, long data records allow a valid multifractal analysis to be carried out (see
Sec. 13.3.8).

2.4 EXAMPLES OF FRACTALS

Fractals abound in many fields:mathematics(Mandelbrot, 1982; Stoyan & Stoyan,
1994; Peitgen, J̈urgens & Saupe, 1997; Barnsley, 2000; Mandelbrot, 2001; Falconer,
2003; West, Bologna, Grigolini & MacLachlan, 2003; Doukhan, 2003);physics
(Mandelbrot, 1982; Feder, 1988; Schroeder, 1990; Sornette, 2004);geology(Tur-
cotte, 1997);imaging science(Peitgen & Saupe, 1988; Turner, Blackledge & An-
drews, 1998; Flake, 2000);electronic devices and systems(Buckingham, 1983; van
der Ziel, 1986, 1988; Weissman, 1988; Kogan, 1996);complex electronic and pho-
tonic media (Berry, 1979; Merlin, Bajema, Clarke, Juang & Bhattacharya, 1985;
Kohmoto, Sutherland & Tang, 1987);materials growth (Kaye, 1989; Vicsek, 1992);
signal processing(Flandrin & Abry, 1999);engineering (Lévy Véhel, Lutton &
Tricot, 1997);vehicular-traffic behavior (Musha & Higuchi, 1976; Bovy, 1998);
computer networks(Mandelbrot, 1965a; Leland, Taqqu, Willinger & Wilson, 1994;
Albert, Jeong & Barab́asi, 1999; Park & Willinger, 2000);biology and physiol-
ogy (Musha, 1981; Turcott & Teich, 1993; Bassingthwaighte, Liebovitch & West,
1994; West & Deering, 1994, 1995; Collins, De Luca, Burrows & Lipsitz, 1995;
Turcott & Teich, 1996; Liebovitch, 1998; Vicsek, 2001; Teich, Lowen, Jost, Vibe-
Rheymer & Heneghan, 2001; Shimizu, Thurner & Ehrenberger, 2002);behavior
and psychiatry (Paulus & Geyer, 1992; West & Deering, 1995; Gottschalk, Bauer
& Whybrow, 1995; Teicher, Ito, Glod & Barber, 1996; Anderson, Lowen, Renshaw,
Maas & Teicher, 1999; Anderson, 2001);neuroscience(Verveen, 1960; Evarts, 1964;
Musha, Takeuchi & Inoue, 1983; Läuger, 1988; Millhauser, Salpeter & Oswald, 1988;
Teich, 1989; Lowen & Teich, 1996a; Teich, Turcott & Siegel, 1996; Teich, Heneghan,
Lowen, Ozaki & Kaplan, 1997; Thurner, Lowen, Feurstein, Heneghan, Feichtinger
& Teich, 1997; Lowen, Cash, Poo & Teich, 1997b); fractals also play important roles
in other fields.

We proceed to consider four examples of fractals, one each of the possible com-
binations of

• artificial andnatural

• deterministicandrandom.
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2.4.1 Cantor set

The Cantor set, discovered by Georg Cantor (1883), provides an example of an
artificial, deterministic, one-dimensional fractal structure that extends to arbitrarily
small scales. One particular mathematical construction of this set has as its starting
point the closed unit interval

C0 ≡ [0, 1]. (2.8)

From C0, we formC1, the next step in the formation of the triadic Cantor set, by
removing the middle third of this interval:

C1 ≡
[
0
3 , 1

3

] ⋃ [
2
3 , 3

3

]
, (2.9)

where∪ representsthe set union operation. We then obtainC2 from C1 by removing
the middle thirds ofbothsegments, so that

C2 ≡
[
0
9 , 1

9

] ⋃ [
2
9 , 3

9

] ⋃ [
6
9 , 7

9

] ⋃ [
8
9 , 9

9

]
. (2.10)

ThesetCn denotes thenth stage in this process. This procedure is continued indefi-
nitely, leading to the Cantor set itself,C, which is defined as the limit

C ≡ lim
n→∞

Cn. (2.11)

Fig. 2.1 The first six stages in the construction of a triadic Cantor set. The process begins
with the unit interval; removing the middle third of each segment at a given stage yields the
following stage. Continuing this process indefinitely yields the Cantor set itself as a limit.

The first six stages in the construction of a triadic Cantor set are displayed in
Fig. 2.1. The Cantor setC consists of two exact copies of itself, in the intervals

[
0, 1

3

]
and

[
2
3 , 1

]
, respectively, each of which is one-third the size of the whole. It also

contains four copies of itself, each one-ninth the size of the whole. In fact it has2n

copies, each3−n the size of the original set, for all nonnegative integersn. For the
triadic Cantor set, increasing the length scaleε by a factor of 3 decreases the number
of copiesN(ε) by a factor of 2, so thatN(ε) ∼ ε−D0 with D0 ≡ log(2)/ log(3) .=

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



18 SCALING, FRACTALS, AND CHAOS

0.630930. There is, in fact, an entire family of generalized dimensionsDq (see
Sec. 3.5.4) but for monofractals such as the Cantor set, these all coincide so that
Dq = D for all q.

A set with infinitely many copies of itself, each of vanishing size, can exhibit
counterintuitive properties. Such seeming paradoxes often occur in the study of
abstract fractals, and we now proceed to examine one in the light of the Cantor set:
this set has a total length of zero, but just as many points as the unit interval employed
as the first stage in its construction. To show this, we begin with the total length
of the Cantor set. The initial stage of the Cantor set consists of the unit interval,
and therefore has a Lebesgue measure or lengthL(C0) of unity. The second stage
has 2 segments of length13 , for a total lengthL(C1) = 2

3 ; thenth stage comprises
2n segments each of length1/3n, yieldingL(Cn) = ( 2

3 )n. Continuing this process
indefinitely leads to the total length of the Cantor set itself as a limit:

L(C) = lim
n→∞

L(Cn) = lim
n→∞

(
2
3

)n = 0. (2.12)

So the Cantor set has zero total length.
Turning now to the number of points in the Cantor set, consider a ternary expansion

of the points in the original intervalC0 ≡ [0, 1]. Each pointx in this interval may be
represented by a corresponding sequence of digits0.a1a2a3a4 . . ., where

x =
∑

k

ak

(
1
3

)k
, (2.13)

with eachak either 0, 1 or 2. Points ofC0 contained in the open interval
(

1
3 , 2

3

)
will

not appear inC1, and all have a 1 in the first position after the decimal point of their
ternary expansions. (The point1

3 , the upper limit of the first segment, also has a 1
in the first position, but remains inC1 and inC as well. We will return to the issue
of endpoints shortly.) Points with a 1 in the second position after the decimal point
correspond to the middle third of both segments ofC1, and will not appear inC2 or in
subsequent stages. Thus,Cn contains only those points without a1 in any of the first
n positions of the corresponding expansions.

In the limit, then, the Cantor setC contains only those points that do not display a1
in anyposition of the corresponding expansion; the ternary expansion of any point in
C consists solely of the symbols 0 and 2. For example, the point corresponding to the
expansion0.020202 . . . (base 3)= 1

4 belongsto C, whereas0.111111 . . . (base 3)=
1
2 doesnot. Points in the original intervalC0 may also be expanded inbinary format,
with each digit chosen from the set{0, 1}. Therefore, there exists a one-to-one
mapping between the points in the Cantor setC and those in the original unit interval
C0; simply replace the “2” symbols in the ternary expansion for the former with
“1” symbols in the binary expansion of the latter. In particular, the Cantor set has
uncountably many points. The endpoints, mentioned earlier, form only a countable
subset of the Cantor set, and therefore do not change its cardinality.

Variants of the Cantor set described above, in which each stage in the construction
removes a fraction of the points removed in constructing the ordinary Cantor set (see,
for example, Rana, 1997), are known asfat Cantor sets. Consider removing only the
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EXAMPLES OF FRACTALS 19

middlec/3n of the segments employed in the construction ofC, for example, where
0 < c < 1. Here we remove a total of2n−1 segments of widthc/3n in constructing
thenth stage of the fat Cantor setCF . The total width remaining becomes

L(CF
n ) = 1−

n∑
m=1

2m−1 c/3m

= lim
n→∞

L(CF
n )

= lim
n→∞

(
1−

n∑
m=1

2m−1 c/3m

)

= 1− (c/3) /
(
1− 2

3

)

= 1− c . (2.14)

For c = 1 we recover the result thatL(C) = 0. The setCF therefore has a Lebesgue
measure of1 − c, but with an uncountably infinite number of points missing when
compared with the unit intervalC0. In particular, in this set an infinite number of
intervals of infinitesimal size exist near any point that belongs toC. For the Cantor
set itself, each point inC has an infinite number of neighbors inC that are arbitrarily
close to it, butC lacks intervals of any length.

2.4.2 Brownian motion

We use Brownian motion as an example of an artificial, random fractal.Brown-
ian motion has a long and storied history in the annals of several scientific dis-
ciplines: biology (Brown, 1828), financial mathematics (Bachelier, 1900), physics
(Einstein, 1905; Perrin, 1909), and mathematics (Wiener, 1923; Kolmogorov, 1931;
Lévy, 1948). The first observation of this phenomenon appears to have been made in
1785 by Jan Ingenhousz, a Dutch physician, in the course of examining the behavior
of powdered charcoal on the surface of alcohol (see Klafter, Shlesinger & Zumofen,
1996, p. 33), but the term Brownian motion arose following the Scottish botanist
Robert Brown’s (1828) description of the movement of pollen grains in water.

In accordance with general usage, however, we denote as Brownian motion a par-
ticular continuous-time random process known as aWiener–Lévy process(Wiener,
1923; Ĺevy, 1948) [alternate appellations areWiener process(Wiener, 1923) and
Bachelier process(Bachelier, 1900, 1912)]. Thus, Brownian motion, like the Cantor
set, is considered to be an abstract construction, although it does closely approximate
much experimental data. Unlike the Cantor set, however, Brownian motion involves
randomness in its definition. Different realizations of the Brownian-motion process
appear different, although all are governed by the same statistical properties.

One definition of Brownian motionB(t), t ≥ 0, involves the following three
properties. First, Brownian motion is a Gaussian process; this signifies that a vector
{B(t1), B(t2),..., B(tk)} for any positive integerk and any set of times{t1, t2,..., tk}
has a joint Gaussian (normal) distribution. Second, the mean is zero:E[B(t)] = 0
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20 SCALING, FRACTALS, AND CHAOS

Fig. 2.2 A realization of Brownian motion. Time increases towards the right, with the origin
at the left.

for all t, whereE[·] represents expectation or mean. Third, the autocorrelation3 of
the process at two timess andt equals the smaller of the two times

E[B(s)B(t)] = min(s, t) (2.15)

for all s andt, wheremin(x, y) returns the smaller ofx andy. Figure 2.2 displays a
realization of Brownian motion.

We can derive a number of other characteristics from these three properties. In
particular, Brownian motion contains statistical copies of itself. To see this, define a
new functionB∗(t) ≡ B(at), a version of Brownian motion with a rescaled time axis.
The random processB∗(t) also belongs to the Gaussian family of random processes,
with a mean of zero and an autocorrelation

E[B∗(s)B∗(t)] = E[B(as)B(at)] = a min(s, t). (2.16)

Now consider rescaling the amplitude ofB∗(t): defineB†(t) = a−1/2 B∗(t) =
a−1/2 B(at). Like B(t) andB∗(t), B†(t) is a zero-mean Gaussian process. The
autocorrelation forB†(t) is therefore written as

E[B†(s)B†(t)] = E[a−1/2 B∗(s) a−1/2 B∗(t)]
= a−1 E[B(as)B(at)]
= a−1 amin(s, t)
= min(s, t), (2.17)

which is identical to that of the original processB(t).

3 We define autocorrelation as the expectation of the product of a process at two different times or delays,
while autocovariance denotes the result with the mean value removed. For zero-mean processes, the two
coincide.
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SinceB†(t) andB(t) are Gaussian processes with the same mean and autocorre-
lation, the two processes are statistically identical (Feller, 1971). Thus, changing the
time axis by a scalea and the amplitude axis by a scaleaH , with H = 1

2 , yields the
same result, andB(t) contains statistical copies of itself at any scale. In Chapter 6 we
consider a generalization of Brownian motion, called fractional Brownian motion, in
which the parameterH can assume any value between zero and unity.

2.4.3 Fern

We move now from abstract mathematical fractal objects, such as the Cantor set
and Brownian motion, to natural fractal objects. These are ubiquitous in the real
world. A simple fern provides a particularly clear example. Figure 2.3 displays the
main frond of a fern (oriented vertically), which contains many sub-fronds (oriented
horizontally), each a miniature copy of the whole.

Fig. 2.3 A fern, an example of a natural fractal with little randomness. The main frond com-
prises many sub-fronds, each a miniature copy of the whole. This fern,Athyrium filix-femina
(Lady Fern), was collected from the backyard of the first author’s residence in Massachusetts.
It is well described as a deterministic fractal.

This scaling continues; each sub-frond contains sub-sub-fronds (oriented vertically
again), and at the bottom of the figure there is evidence for a fourth level of detail.
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Like all objects in the physical world, ferns have a minimum scale for their fractal
behavior, here at the fourth level. The copies, while not perfect replicas of the whole,
do not differ much from it; the fern is well described as a deterministic fractal.

2.4.4 Grand Canyon river network

Fig. 2.4 An overhead view of the Grand Canyon, a random natural fractal gouged out by the
Colorado river. The main canyon contains many sub-canyons, each resembling the whole in
a statistical manner. This photograph was taken from space by astronauts during U.S. Space
Shuttle Flight STS61A. Image obtained from: Earth Sciences and Image Analysis, NASA–
Johnson Space Center; 15 November 2004; “Astronaut Photography of Earth–Display Record.”
http://eol.jsc.nasa.gov/scripts/sseop/photo.pl?mission= STS61A&roll=201&frame=75

Whereas a fern provides an example of a deterministic natural fractal, most natural
fractals exhibit randomness. Consider the Grand Canyon (Arizona), shown in Fig. 2.4.
The main canyon, running from the top left, through the center, and exiting at the
lower left, contains a number of sub-canyons along its length. While each sub-canyon
appears different from the Grand Canyon itself and from the other sub-canyons, all
resemble each other. The sub-canyons resemble the whole in a statistical manner.
Again, the scaling continues, with the sub-canyons containing still smaller sub-sub-
canyons of similar appearance within them, and so forth, down to the resolution
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limit of the photograph. Here the lower limit of fractal behavior derives from the
measurement, rather than from the fractal object itself. The Grand Canyon thus
provides an example of a random natural fractal.

2.5 EXAMPLES OF NONFRACTALS

Lest the reader gain the mistaken impression that all objects are fractals, we provide
four counterexamples, again employing one each of the possible combinations of
artificial and natural, and deterministic and random.

2.5.1 Euclidean shapes

Classical Euclidean shapes, such as circles, lines, and simple polyhedra have a single,
well-defined scale, and therefore do not exhibit similar behavior over different scales.
These artificial, deterministic objects do not reveal further detail upon magnification,
nor do they possess copies of themselves. Such shapes are, therefore, not fractal.

2.5.2 Homogeneous Poisson process

Remaining in the abstract realm but turning now to random objects, we consider the
one-dimensional homogeneous Poisson process (Parzen, 1962; Cox, 1962; Haight,
1967; Cox & Isham, 1980), perhaps the simplest of all point processes (see Sec. 4.1).
Like Brownian motion, different realizations of this process have a different appear-
ance, although each is governed by the same statistical properties. A single constant
positive quantity, the rate, denotes the number of events (points) expected to occur in
a unit interval, and this quantity completely characterizes the homogeneous Poisson
process. The absence of memory completes the definition of this process; given the
rate, knowledge of the entire history and future of a given realization of a homo-
geneous Poisson process yields no additional information about the behavior of the
process at the present.

-TIME t
6 6 66 6 6 66 6 6

Fig. 2.5 Schematic representation of a one-dimensional homogeneous Poisson process. The
time axis runs horizontally to the right, and the vertical arrows depict individual events (points)
as they occur in time.

A schematic representation of a realization of a one-dimensional homogeneous
Poisson process appears in Fig. 2.5. The vertical arrows depict individual events
(points) as they occur, while the horizontal axis represents time. Although the inter-
vals between the events vary they are associated with a fixed time scale via the rate
parameter, in contrast to a fractal object. In particular, decreasing the time scale used
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to display the process yields a more sparse version of the original that appears quite
different from it. Unlike a fractal process, it does not appear to be a random copy of
the original. Further, the probability density function for the intervals follows an ex-
ponential form [see Eq. (4.3)], rather than the power-law form of Eqs. (2.5) and (2.6).
Like the Euclidean shapes considered above, the homogeneous Poisson process is not
fractal.

2.5.3 Orbits in a two-body system

The path followed by one of the bodies in a two-body orbiting system, such as the earth
and the moon,4 provides an example of a natural, deterministic, nonfractal object.
Newtonian physics predicts that the two bodies will orbit about their mutual center
of mass along trajectories described by perfect ellipses, and will do so indefinitely
(Newton, 1687; Feynman, Leighton & Sands, 1963, vol. I, pp. 7-1–7-8). These orbits
have a single scale; they do not exhibit similar behavior over different scales nor do
they contain copies of themselves. The paths resemble the abstract Euclidean shapes
exemplified in Sec. 2.5.1.

In contrast, the paths traced by planets in systems containing three or more bod-
ies do exhibit fractal characteristics. This is particularly evident when the bodies
have similar masses and are separated by similar distances. Such systems exhibit
deterministic chaos (see Sec. 2.6), and chaotic systems often have fractal movement
patterns.

2.5.4 Radioactive decay

Finally, for an example of a natural, random, nonfractal process, we turn to radioactive
decay (Feynman et al., 1963, vol. I, pp. 5-3–5-5). A single radioactive atom will
decay at some random time in the future, and, while the exact time of decay remains
unknowablea posteriori, the probability of decay by any specified time is well known.
Imagine, now, a collection of identical radioactive atoms, each undergoing decay at
a random time. The registrations of these decay events form a random point process.
It is associated with a single time constant or scale: the average decay time of the
atoms.

The emissions resemble the homogeneous Poisson process presented in Sec. 2.5.2
provided that the observation times are sufficiently smaller than the average decay
time (Rutherford & Geiger, 1910). Like the Poisson process, modifying the time
scale over which the radioactive decay process is observed results in a qualitatively
different process. Moreover, the probability density function for the times between
decays does not follow the power-law form of Eqs. (2.5) and (2.6). Radioactive decay
is not a fractal process.

4 For simplicity of exposition we ignore perturbations induced by other celestial bodies and tides, as well
as minor relativistic effects.
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2.6 DETERMINISTIC CHAOS

Chaos and fractals are not synonymous, although the two concepts are often conflated.
Chaos is, of course, an important topic in its own right (Poincaré, 1908; Devaney,
1986; Glass & Mackey, 1988; Moon, 1992; Ott, Sauer & Yorke, 1994; Strogatz, 1994;
Schuster, 1995; Alligood, Sauer & Yorke, 1996; Peitgen et al., 1997; Thompson &
Stewart, 2002; Ott, 2002). Even though chaos does not play a central role in the
treatment of fractals, we compare and contrast these two phenomena to clarify their
relationship.

Chaos describes the behavior of a deterministic nonlinear dynamical system in the
presence of the following three features. First, small changes in the initial state of
the system must lead to quite different results at some later time. For two identical
systems beginning in slightly different states, the difference between them increases
exponentially over time. Poincaré (1908) was the first to allude to this “sensitive
dependence on initial conditions”.5 Second, and related to the first, the prediction of
system dynamics becomes increasingly more difficult as the time of prediction moves
further into the future. And third, an infinite number of unstable periodic orbits exists.
With arbitrarily small continual adjustments, the dynamics of the system can be forced
to follow any number of periodic paths, although in the absence of such adjustments
the dynamics quickly depart from all such orbits. The diversity of behavior offered
by a chaotic system has profound consequences. Conrad (1986) has categorized
five functional roles that chaos might play in biological systems: search, defense,
maintenance, cross-level effects, and dissipation of disturbance.

Given a dynamical system, it is customary to plot the state variables in phase
space, collapsing the time information in the process. The resulting graph provides
a window on the dynamics of the system. For dissipative systems, after an initial
transient period system activity converges to a restricted region of phase space called
the attractor of the system.

Some systems havefractal attractors, also known asstrange attractors. The
dynamics such systems display a rich pattern in phase space; enlarging a section of
such an attractor continues to reveal new details without limit. Many (but not all)
systems exhibiting chaos have strange attractors. Similarly, many (but not all) strange
attractors derive from systems that are chaotic. However, neither feature necessarily
implies the other. Unfortunately, the literature is rife with misconceptions pertaining
to this issue.

We proceed to demonstrate the fundamental distinction between the two concepts
by presenting examples of all four possibilities: chaotic and nonchaotic systems with
both fractal and nonfractal attractors. To facilitate comparison between the various
systems we confine ourselves to the simple class of iterated-function systems, which

5 “A very small cause that escapes our notice has a considerable effect that we cannot fail to see, and we then
say that the effect arises from chance. . . but it may happen that small differences in the initial conditions
produce very large differences in the final phenomena. A small error in the former then produces a very
large error in the latter and prediction becomes impossible. . .”—Poincaŕe (1908)
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follow the form
xn+1 = f(xn) (2.18)

or
xn+1 = f(xn, yn) a)
yn+1 = g(xn, yn) b)

(2.19)

for the one- and two-dimensional versions, respectively.

2.6.1 Nonchaotic system with nonfractal attractor

We begin with the logistic map, a particular example of Eq. (2.18) that takes the form
of a quadratic recurrence relation,

xn+1 = f(xn) = c xn(1− xn) . (2.20)

This function maps the unit interval[0, 1] to itself, and exhibits behavior that varies
with the parameterc. It is a discrete version of the logistic equation of fame in ecology
(Verhulst, 1845, 1847).

We begin by examining the stability of Eq. (2.20). A fixed point satisfies the
equationxn+1 = xn = x∗, which yields

x∗ = f(x∗)
= cx∗(1− x∗)

0 = x∗
[
x∗ − (1− 1/c)

]
. (2.21)

Eliminating the degenerate valuex∗ = 0 providesx∗ = 1 − 1/c for the remaining
fixed point. What happens to values near the fixed point determines its stability; to
assess this, we use a test valuexn = x∗ + εn, whereεn is a value much smaller than
unity. We then have

xn+1 = f(xn)
x∗ + εn+1 = f(x∗ + εn)

= c (x∗ + εn)
[
1− (x∗ + εn)

]

= c x∗(1− x∗) + c εn(1− 2x∗ − εn)
= x∗ + c εn(1− 2x∗ − εn)

εn+1/εn = c (1− 2x∗ − εn)
= 2− c (1 + εn) . (2.22)

For the nonchaotic case, we choosec = 2. The fixed point then becomesx∗ = 1−
1/c = 1

2 , whereupon Eq. (2.22) yieldsεn+1/εn = −2εn indicating a rapid (quadratic,
in fact) relaxation towards the fixed point. Since the fixed point is stable, the attractor
of the system consists of that single point only. Thus, a plot of all possible values
xn, after transient effects have subsided, yields a single point,xn = 1

2 . This zero-
dimensional object has no fractal qualities whatsoever, and forms a nonfractal (non-
strange) attractor. Furthermore, since all values ofxn converge rapidly to the fixed

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



DETERMINISTIC CHAOS 27

point x∗, any differences among starting values must decrease, rather than increase,
over time, thereby precluding a sensitive dependence on initial conditions. The system
of Eq. (2.20) withc = 2 therefore does not exhibit chaos. Figure 2.6 displays this
convergence by showing the sequence{xn} that results from two different starting
values,x0 = 0.1 and0.4, and illustrates the lack of chaos in this system.

ITERATION NUMBER nITERATEVA
LUEx n

1086420
1.00.80.60.40.20.0

Fig. 2.6 Time course of a logistic system with parameterc = 2, for two different starting
values:x0 = 0.1 and0.4. Although the two initial points differ widely, they both converge to
the same value, the fixed pointx∗ = 1

2
. This system thus does not display sensitive dependence

to initial conditions, and does not exhibit chaos.

ITERATION NUMBER nITERATEVA
LUEx n

50403020100
1.00.80.60.40.20.0

Fig. 2.7 Time course of a logistic system with parameterc = 4, for two different starting
values: x0 = 0.1 and0.1 + 10−9. Although the two initial points differ only slightly, the
iterates diverge and are completely unrelated after 30 iterations. This system does indeed
display sensitive dependence to initial conditions, and exhibits chaos.
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2.6.2 Chaotic system with nonfractal attractor

For the purposes of this example, we again consider the logistic map of Eq. (2.20), but
now with c = 4. The nonzero fixed point becomesx∗ = 1− 1/c = 3

4 . The stability
analysis of Eq. (2.22) now yieldsεn+1/εn = −2 − 4εn ≈ −2 so that deviations
about the fixed point double in magnitude with each iteration. This fixed point thus
does not comprise the attractor. In fact, for this value ofc no limit cycles exist of
any finite period and the entire interval0 < xn < 1 forms the attractor (Schroeder,
1990, pp. 291–294). Except for a set of measure zero, iterates of any initial valuex0

will eventually come arbitrarily close to any specified value in the unit interval. This
attractor forms a simple line segment and again has no fractal properties, establishing
that for the logistic map withc = 4 the attractor is nonfractal.

Despite not having a fractal attractor, the system nevertheless displays chaos
(Schroeder, 1990, pp. 291–294). The lack of fixed points or limit cycles suggests
this, but a graphical demonstration illustrates it well. Figure 2.7 presents the se-
quence of iterations{xn} resulting from two starting values:0.1 and a value just a
bit larger,0.1 + 10−9. Although indistinguishable at first, the difference between
the two paths grows over time, and by iterationn = 30 the two sequences exhibit
no relation to each other. This sensitivity to initial conditions illustrates the chaotic
nature of the logistic system for the parameter valuec = 4.

2.6.3 Chaotic system with fractal attractor

We next turn to the H́enon attractor (H́enon, 1976). This two-dimensional iterated-
function system follows the form of Eq. (2.19) with

xn+1 = 1.0 + ax2
n + byn a)

yn+1 = xn, b)
(2.23)

with a = −1.4 andb = 0.3. We first establish the fractal nature of the attractor
by simulation. Starting with(x0, y0) = (1.08003, 0.305372), we iterate Eq. (2.23)
1 000 times, discarding these first results to eliminate any transient behavior, and
then iterate a further 3 000 times and retain these values. Figure 2.8a) illustrates the
attractor, which forms a boomerang shape bounded by−1.3 < x, y < 1.3. The
initial pair (x0, y0) = (1.08003, 0.305372) belongs to the attractor, as verified by
further iterations, justifying its choice as a starting value. Enlarging a small section
of Fig. 2.8a) (the box shown at the upper right) yields a banded structure [panel b)];
further enlargements yield substantially similar forms, as shown in panels c) and
d). This self-similarity provides evidence of fractal characteristics, and in fact this
attractor is indeed a fractal object (Peitgen et al., 1997).

We now proceed to consider the chaotic nature of the Hénon system. As before, we
employ two different starting values,(x0, y0) = (1.08003, 0.305372), as in Fig. 2.8,
and(x0 + εx, y0) with εx = 10−7. Figure 2.9 shows thex values of the iterates
diverging so that byn = 43 the two sequences have essentially no connection to
each other, despite being almost identical atn = 0; the results resemble those for the
logistic system withc = 4, displayed in Fig. 2.7.
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This establishes the sensitivity to initial conditions of the system, and thereby pro-
vides evidence of chaos. More detailed and rigorous analysis supports this conclusion
(Peitgen et al., 1997).

IT
E

R
A T

E
x

a) b)
) d)

ITERATE y

Fig. 2.8 a) Three thousandx-y pairs in the attractor of the H́enon system as shown in
Eq. (2.23), witha = −1.4 andb = 0.3. An initial 1 000 iterations were discarded to eliminate
transient effects. b) An enlargement of the small area within the box in panel a): 3 000 values
of the attractor constrained to lie in the region0.6 ≤ x ≤ 0.7 and0.5 ≤ y ≤ 0.7. A parallel
banded structure emerges. c) A further enlargement, of the area within the box in panel b):
3 000 values within0.64 ≤ x ≤ 0.65 and0.61 ≤ y ≤ 0.63. An enlargement of the upper
band in panel b) yields a result similar to panel b). d) A final enlargement of the area within the
box in panel c): 3 000 values within0.644 ≤ x ≤ 0.645 and0.622 ≤ y ≤ 0.625. The upper
band in panel c) resolves into the same pattern as seen in the whole of panels b) and c). Hence,
the attractor has similar structures over many spatial scales, suggesting that it forms a fractal
object. This system is also chaotic, as illustrated by the time course displayed in Fig. 2.9.
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ITERATION NUMBER nITERATEVA
LUEx n

6050403020100
1.00.50.0-0.5-1.0

Fig. 2.9 Time course of the H́enon system with parametersa = −1.4 andb = 0.3, for two
different starting values:(x0, y0) = (1.08003, 0.305372), and(x0 +εx, y0) with εx = 10−7.
Again, although the two initial points differ only slightly, the iterates diverge and appear
completely unrelated by the 43 iteration. Like the logistic system withc = 4 (see Fig. 2.7),
this system displays sensitive dependence to initial conditions, and exhibits chaos. The attractor
for this system is fractal, however, as illustrated in Fig. 2.8.

2.6.4 Nonchaotic system with fractal attractor

Finally we consider a nonchaotic system which nevertheless has an attractor with
fractal characteristics. We again employ the logistic map, Eq. (2.20), with the pa-
rameterc

.= 3.56995168804. As previously, we begin by simulating the system to
illustrate the fractal nature of the resulting attractor. Using an arbitrary starting value
x0 = 0.31412577217182861803, we iterate Eq. (2.20) 3 000 times after discarding
the first 1 000 iterates.

The attractor is illustrated in Fig. 2.10a) — it forms a set of disconnected regions
in the unit interval0 < x < 1. Progressive enlargements of regions of thex-axis of
Fig. 2.10a) (delineated by the horizontal lines portrayed in the top three panels) yield
new detail. Although different in form from that of the Hénon attractor, the evident
self-similarity suggests that the attractor is fractal.

Moving now to confirm the presence or absence of chaos in this system, we
again employ two different starting values:x0 = 0.87951016911829671 andx0 =
0.89087022021791951, chosen from the values shown in Fig. 2.10a), after 1 000 it-
erations to eliminate transient effects. As shown in Fig. 2.11, unlike the results for
the logistic system withc = 4 and for the H́enon system, different starting points do
not diverge. The system of Eq. (2.20) withc

.= 3.56995168804 therefore does not
exhibit sensitive dependence on initial conditions and is not chaotic. Other mathemat-
ical models of nonchaotic systems with fractal attractors have been set forth (Grebogi,
Ott, Pelikan & Yorke, 1984), as has a physical experiment exhibiting such behavior
(Ditto, Spano, Savage, Rauseo, Heagy & Ott, 1990).
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ITERATE x

Fig. 2.10 a) Three thousand values in the attractor of the logistic system [Eq. (2.20)] with
parameterc

.
= 3.56995168804. An initial 1 000 iterations were discarded to eliminate transient

effects. Each iterate is represented by a vertical line for clarity. Thex axis ranges from zero
to unity in this panel. Horizontal lines above and below the left-most cluster delineate the
interval enlarged in the subsequent panel. b) An enlargement of the original interval delineated
by the horizontal lines in panel a): 3 000 values of the attractor constrained to lie in the region
0.338 ≤ x ≤ 0.386. Increased detail emerges with a structure similar to that of the whole
attractor in a). c) and d) Further enlargements of the regions delineated by horizontal lines in
the preceding panels: 3 000 values of the attractor in the intervals0.3424 ≤ x ≤ 0.3437 and
0.342544 ≤ x ≤ 0.342581, respectively. Fresh new structures that resemble those in panels
a) and b) continue to appear, suggesting that the attractor is fractal. This system is not chaotic,
however, as revealed by the time course displayed in Fig. 2.11.

2.6.5 Chaos in context

Considering the results presented to this point, we see that systems can exhibit chaotic
behavior or fractal (strange) attractors, or both, or neither. All four possibilities exist.

From a fundamental perspective, the term chaos describes certain nonlinear deter-
ministic dynamicalsystemswhereas the term fractal describes certainobjects. Thus,
chaos does not imply fractal nor does fractal imply chaos.
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ITERATION NUMBER nITERATEVA
LUEx n

50403020100
1.00.80.60.40.20.0

Fig. 2.11 Time course of the logistic system of Eq. (2.20) with parameterc
.
=

3.56995168804, for two different starting values. The iterated values maintain a difference
roughly equal to that of the starting values,≈ 0.01, neither converging nor diverging. Hence,
this system does not display sensitive dependence to initial conditions, and does not exhibit
chaos. The attractor for this system is fractal, however, as illustrated in Fig. 2.10.

Moreover, the presence of significant noise or random behavior in a system gen-
erally precludes a meaningful assertion that the system is chaotic. Noise experiences
the amplifying behavior of the system’s sensitivity to initial conditions, so that even
identical starting values experience rapidly diverging paths. Under such conditions,
the concept of chaos loses its usefulness. Instead, the random nature of the system,
imparted by the noise, becomes a key defining quality of its dynamics.

Since the topic of this treatise is random fractals, we do not consider chaos further.

2.7 ORIGINS OF FRACTAL BEHAVIOR

2.7.1 Fractals and power-law behavior

Why are fractal characteristics found in so many systems, both natural and synthetic?
A good part of the reason turns out to be the close connection between fractals and
scaling and hence between fractals and power-law behavior (see Secs. 2.2 and 2.3).
Indeed, close examination reveals that the fractal behavior associated with many
of the models considered throughout this book derives explicitly from the power-
law relationships embodied in these models. When no such direct link exists, it
turns out that other intrinsic properties of these models ultimately lead to power-law
relationships. Power-law relationships can sometimes be traced to the presence of a
cascade process in the underlying phenomenon.
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The essential notion of a fractal has historical antecedents in theory and exper-
iment alike (see Mandelbrot, 1982, Chapter 41). Consider Leibniz’s (1646–1716)
conception of fractional integro-differentiation and his definition of the straight line;
Kant’s (1724–1804) ruminations about the lack of homogeneity in the distribution of
matter; Laplace’s (1749–1827) suggestion that the scaling nature of Newton’s Law
of gravitation offered an axiom more natural than that of Euclid; and Weierstraß’s
(1815–1897) construction of a continuous, but nowhere differentiable, function.

In the empirical domain, we recall Weber’s (1835) finding that the relaxation of a
stretched silk thread follows a decaying power-law function of time, and Kohlrausch’s
(1854) observation that the decay of charge in a Leyden jar follows this very same
form. We appreciate that Omori (1895) long ago recognized that the rate of after-
shocks following an earthquake decays as an inverse function of time.

Indeed, power-law behavior is ubiquitous (see, for example, Malamud, 2004). It
occurs in many guises, including deterministic laws, first-order statistics, second-
order statistics, distributions, and nonlinear transformations. It is observed in the
dynamical responses of systems and in their frequency spectra. Pareto (1896) long ago
discovered that scale-invariant, power-law distributions characterize the income of
individuals in many societies.6 Behavior in accord with thePareto distribution ,7 and
its discrete counterpart, thezeta distribution, emerges in a broad array of contexts.
Examples include:

• The number of species in different genera (Willis, 1922).

• The number of publications by different authors (Lotka, 1926).

• The agricultural yields of different sized plots (Fairfield-Smith, 1938).

• The energies of earthquake occurrences (Gutenberg & Richter, 1944).

• The mass densities of yarns of different lengths (Cox, 1948).

• The frequencies of word usage in natural languages (Zipf, 1949).

• The sizes of computer files (Park, Kim & Crovella, 1996).

The question posed at the beginning of this section — “Why are fractal characteristics
found in so many systems?” — can thus be recast as: “Why is power-law behavior
found in so many systems?”

2.7.2 Physical laws

Several key laws of classical physics take the form of deterministic power-law func-
tions of the distancer,

F ∝ r c, (2.24)

6 A photograph of Pareto stands at the beginning of Chapter 7.
7 A useful generalization of the Pareto distribution has been provided by Mandelbrot (1960, 1982), as will
be elaborated subsequently.
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whereF is the force (or field) andr is the distance (see Feynman, 1965). Perhaps the
most prominent example of this scaling relation is Newton’s (1687) Law of gravitation,
which provides that the gravitational fieldF associated with an object at a distancer
follows an inverse-square law,F ∝ r−2, so thatc = −2.

The Coulomb field associated with a charged particle also behaves in accordance
with Eq. (2.24), again withc = −2. Other charge configurations similarly lead to
power laws, but with different exponents; examples are an infinite line of charge
(c = −1); a charge dipole (c= −3); a charge quadrupole (c = −4); and the van der
Waals force between a pair of dipoles (c= −7). In the study of the mechanics of
materials, Hooke’s Law provides that the restoring force for an elastic medium also
obeys Eq. (2.24), wherer is the deformation andc = +1 (see Gere, 2001). Also,
the Langmuir–Childs Law for space-charge-limited current flow in electronic devices
dictates thati ∝ V 3/2, wherei is the current andV is the voltage (see Terman, 1947,
Sec. 5–5).

Some physical processes are conveniently described in terms of power-law func-
tions of time, as evidenced by the following examples: (1) the distanced traveled by
an object falling under the force of gravity is characterized byd ∝ t2; (2) Kepler’s
Third Law of celestial mechanics specifies that the major axisb of an elliptical plan-
etary orbit is related to the orbital periodT via b ∝ T2/3; and (3) the time course of
the mean photon flux density emitted by a charged particle viaČerenkov radiation
varies ash(t) ∝ t−5 (see Prob. 10.6).

In quantum mechanics, the allowed energy levelsE j of many systems are propor-
tional to some power of the quantum numberj (see Saleh & Teich, 1991, Chapter 12),

E j ∝ j c. (2.25)

Examples are the hydrogen atom (c= −2); the harmonic oscillator with a linear
restoring force (c = +1); the anharmonic oscillator with a cubic restoring force
(c = + 4

3 ); and the infinite quantum well (c= +2). The rigid rotor behaves as
E j ∝ j (j + 1). The spatial scaling of the Lagrangian for these systems allows us to
deduce these exponents directly from the form of the potential energy function (see
Schroeder, 1990, pp. 66–67).

For simple physical systems, the exponentsc are typically integers or rational
numbers, although fractional exponents are not uncommon in semiconductor physics
(see Saleh & Teich, 1991, Chapter 15). In the biological sciences, fractional exponents
are more the rule than the exception, as will become apparent subsequently.

2.7.3 Diffusion

In the domain of stochastic processes, diffusion offers a straightforward route to
achieving power-law dynamics (Whittle, 1962; Marinari, Parisi, Ruelle & Widney,
1983). In one-dimensional diffusion, an object moves randomly along an axis, with
no preferred direction, and with motion at each instant that is independent of motion at
all other times. The path of such an object coincides with Brownian motion, discussed
in Sec. 2.4.2. Equation (2.15) shows that the variance of the position grows linearly
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with time; given the zero-mean Gaussian nature of the process, this leads immediately
to a probability density for the particle positionx:

px(x) = (4π∆ t)−1/2 exp
(
− x2

4∆ t

)
, (2.26)

with ∆ a diffusion constant. The peak height of the density decays with time as
t−1/2, an inverse power law. Given a concentration of small objectsu0 (particles,
for example) clustered tightly about a starting valuex0, a simple modification of
Eq. (2.26) yields a particle concentration envelopeu(x, t) given by

u(x, t) = u0(4π∆ t)−1/2 exp
(
− (x− x0)2

4∆ t

)
. (2.27)

For diffusion in a multidimensional Euclidean spaceof (integer) dimension
DE, the motion along each of the component axes forms an independent realization
of Brownian motion. The corresponding concentration profile then becomes (see, for
example, Pinsky, 1984)

u(x, t) = u0(4π∆ t)−DE/2 exp
(
−|x− x0|2

4∆ t

)
, (2.28)

wherex andx0 representthe general and initial position vectors, respectively. The
concentration decays ast−DE/2, providing exponents12 , 1, and3

2 for DE = 1, 2, and
3, respectively. For diffusion on objects that are physical examples of fractals, the
fractal dimension of the object replaces the Euclidean dimensionDE in Eq. (2.28),
thereby offering a larger set of allowable exponents. Problems 10.8 and 10.9 address
the ramifications of such diffusion processes.

Diffusion-limited aggregation (DLA) describes the aggregation and growth of
structures when diffusion dominates transport (Witten & Sander, 1981). This model
characterizes a broad variety of phenomena including electrodeposition, dielectric
breakdown, snowflake formation, mineral-vein formation in geologic structures, and
the growth of biological structures such as coral (see, for example, Vicsek, 1992;
Halsey, 2000).

Subdiffusion is an important form of anomalous diffusion in which the mean-
square displacement varies astα (0 < α < 1) rather than ast (see Bouchaud &
Georges, 1990). This process can be understood in a simple way by making use of
fractional Gaussian noise (see Sec. 6.2) in a generalized Langevin equation (Kou &
Xie, 2004).

2.7.4 Convergence to stable distributions

An important and far-reaching rationale for the emergence of power-law distributions
has its origins in the limit theorem developed by Paul Lévy (1937, 1940) (see also
Gnedenko & Kolmogorov, 1968; Feller, 1971; Mandelbrot, 1982; Christoph & Wolf,
1992; Samorodnitsky & Taqqu, 1994; Bertoin, 1998; Sato, 1999; Sornette, 2004).
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Sums of identical and independent continuous random variables are characterized
by stable distributions, which generally have power-law tails. The sole exception
is the Gaussian distribution (Gauss, 1809), which emerges (via the ordinary central
limit theorem) when the constituent random variables are endowed with finite second
moments.8

Discrete analogs of the family of continuous stable distributions have recently
been examined (Hopcraft, Jakeman & Tanner, 1999; Matthews, Hopcraft & Jakeman,
2003; Hopcraft, Jakeman & Matthews, 2002, 2004). These probability distributions
typically follow the form

p(n) ∼ 1/nc, 1 < c < 2, (2.29)

for largen. They have zero mode and infinite mean in the absence of an upper cutoff.
However, for counting distributions with an upper cutoff, and therefore a finite mean,
sums converge to the Poisson distribution, which assumes the role played by the
Gaussian for the continuous stable distributions.

2.7.5 Lognormal distribution

A closely related rationale for the presence of power-law behavior stems from the fea-
tures of thelognormal distribution (Kolmogorov, 1941; Aitchison & Brown, 1957;
Gumbel, 1958). This distribution is often used as a model for characterizing systems
comprising products of random variables, via an argument that proceeds as follows. A
product of random variables with finite second moments, under logarithmic transfor-
mation, becomes a sum. Application of the ordinary central limit theorem renders the
sum Gaussian (normal). The original product, then, obeys the lognormal distribution
since its logarithm has a normal distribution.

The lognormal distribution has a long tail and sums of independent lognormally
distributed random variables retain their lognormal form (Mitchell, 1968; Barakat,
1976); although these sums ultimately do converge to Gaussian form, the convergence
is exceedingly slow. Moreover, the tail of the lognormal distribution is closely mim-
icked by a power-law distribution over a wide range (Montroll & Shlesinger, 1982;
Shlesinger, 1987; West & Shlesinger, 1989, 1990); these authors further argue that
many data thought to obey an inverse power-law distribution instead obey the log-
normal law over a broad range and then ultimately transition to power-law behavior
at very large values of the random variable.

In the domain of discrete processes, the Poisson transform of the lognormal dis-
tribution has found widespread use in modeling the photon fluctuations of laser light
transmitted through random media such as the turbulent atmosphere (Diament &
Teich, 1970a; Teich & Rosenberg, 1971). The justification for using the lognormal
model here is the same as that provided above: in traveling from source to receiver,
the laser light encounters a large number of independent atmospheric layers with
random transmittances.

8 Photographs of Gauss and Lévy can be found at the beginning of Chapter 8. A biographical sketch of
Lévy is provided by Mandelbrot (1982, Chapter 40).
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2.7.6 Self-organized criticality

Power-law behavior arises in other ways as well. Some systems spontaneously evolve
toward a critical state and thereby generate power-law distributions. A sandpile
provides the canonical example of this process, calledself-organized criticality
(Bak, Tang & Wiesenfeld, 1987; Bak, 1996), and abbreviatedsoc; the addition of
grains of sand to the top of a sandpile results in the formation of a cone at exactly the
critical angle of repose. Some added grains merely stop where they land, but many
trigger avalanches with power-law varying sizes, maintaining the critical state.

Expansion-modification systemsprovide another example of such spontaneous
evolution. In this case, two processes operate simultaneously, one creating long-range
correlation, and the other destroying it; the resulting construct exhibits correlations
over all scales, and therefore fractal structure (Li, 1991). As an example, each element
in a binary sequence is either inverted with probabilityp, or duplicated with probability
1 − p. Similar behavior may occur in a variety of artificial and natural systems, as
they evolve towards complex, critical states and produce power-law behavior. In a
related model, simple white noise perturbs the movement of activated neural clusters
and competing dissipative and restorative forces ultimately generate1/f -type noise
(Usher, Stemmler & Olami, 1995).

As another particular example, a collection of interconnected processes that evolves
according to the logistic equation generates power-law-distributed amplitudes over a
broad range of system parameters (Solomon & Richmond, 2002).

2.7.7 Highly optimized tolerance

Highly optimized tolerance (Carlson & Doyle, 1999; Doyle & Carlson, 2000; Carl-
son & Doyle, 2002) suggests another possible origin for power-law behavior. Accord-
ing to this theory, power-law behavior emerges naturally as a result of the evolution
of a complex system toward optimal performance and robustness. Natural selection
is said to drive the evolution for collections of living organisms, while engineering
design provides the optimizing impetus for artificial systems. This evolutionary pro-
cess leads to the emergence of specialized states (which would be rare in a random
system without design input) concomitantly with power-law behavior.

Power-law characteristics, and hence fractal behavior, can therefore emerge natu-
rally from system evolution via a number of different constructs (Gisiger, 2001).

2.7.8 Scale-free networks

Yet another way that power-law behavior comes into play is viascale-free networks
(Albert & Barab́asi, 2002; Dorogovtsev & Mendes, 2003; Pastor-Satorras & Ves-
pignani, 2004). For such networks, no node is typical. Some have an enormous
number of connections whereas most are only weakly connected to others. Since
well-connected nodes, called hubs, can have hundreds, thousands, or millions of
links, there is no scale associated with the network. Connectivity in links per node
is described by a probability law, known as thedegree distribution, that typically
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follows a power-law form (Krapivsky, Rodgers & Redner, 2001):

p(n) ∼ 1/nc, 2 < c < 3.5. (2.30)

There are many ways in which scale-free networks can come into being (see, for
example, Krapivsky, Redner & Leyvraz, 2000). The underlying features that lead
to the formation of such networks are continual development and the preferential
attachment to highly linked nodes. As new nodes are formed, the network continues
to evolve; each new node tends to connect to the more highly connected existing
nodes since these are most easily identified.

Examples of scale-free networks in the biological domain stretch from cellular
metabolic networks, in which biochemical reactions link a collection of molecules, to
the brain, in which axons and dendrites link a collection of neurons (Eguı́luz, Chialvo,
Cecchi, Baliki & Apkarian, 2005). Such networks are plentiful in the technological
arena: important examples are air transportation systems, the Internet, and the World
Wide Web (see Sec. 13.2.1). Scale-free networks are also pervasive in the social
domain: examples include scientific collaborations connected by joint publications;
scientific papers linked by citations; people connected by professional associations
or friendships; epidemics of contagious disease linked by family members; and busi-
nesses linked by joint ventures. They have the salutary feature of being robust against
accidental failures because random breakdowns selectively affect the most plentiful
nodes, which are the least connected. Such networks are, however, highly vulnerable
to coordinated attacks directed at the hubs, which are the most intricately connected
of the nodes (Albert & Barab́asi, 2002).

Despite the evident diversity of these scale-free networks, their common architec-
ture brings them under the same mathematical umbrella: the power-law distribution
embodied in Eq. (2.30). The range of asymptotic power-law exponents is rather
narrow and differs from that for discrete stable distributions [compare Eqs. (2.29)
and (2.30)]. The convergence properties of sums of identical, independently dis-
tributed discrete zeta random variables that are suitable for characterizing scale-free
networks have recently been established. The limiting form turns out to be the Pois-
son distribution but the convergence can be exceptionally slow (Hopcraft et al., 2004),
much as with the convergence of sums of lognormal random variables to Gaussian
form (see Sec. 2.7.5). Problems involving discrete scale-invariant behavior should
be formulated in terms of discrete models since continuum models and mean-field
approximations can lead to erroneous results (Hopcraft et al., 2004).

Not all networks are scale-free, of course. Prominent exceptions include the lo-
cations of atoms in a crystal lattice, the U.S. highway system, the power grid in
the Western United States, and the neural network of the organismCaenorhabditis
elegans.

2.7.9 Superposition of relaxation processes

Finally, we note that the observation of first- and second-order statistics with power-
law behavior is often ascribed to asuperposition of relaxation processesexhibiting
a spread of time constants. Maxwell’s student Hopkinson (1876) appears to have
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originated this explanation, suggesting that the power-law decay of the charge in a
Leyden jar might be understood on the basis of various relaxation times for the differ-
ent silicate components of the glass through which the discharge occurred. However,
this argument was later abandoned as unworkable because of the large number of
exponentials required. von Schweidler (1907) resurrected this approach by consider-
ing a large number of relaxation processes with a wide spread of time constants. He
noted that the properties of the gamma function were such that a power-law function
could be represented in terms of a weighted collection of exponential functions with
different relaxation times.

In the context of semiconductor physics, van der Ziel (1950) used a correlation-
function version of this approach to explain the inverse-frequency form of the spec-
trum; Halford (1968) subsequently offered a generalization of this model. This con-
struct finds wide acceptance in the semiconductor-physics community by virtue of its
connection to trapping mechanisms, which offer an exceptionally wide range of time
constants (McWhorter, 1957, see also Prob. 7.10). Buckingham (1983, Chapter 6)
addressed the role of the weighting functions.

Many other materials and systems, physical and biological alike, display simi-
lar power-law behavior, as shown in Chapter 5. However, the relaxation-process
approach is rarely appropriate for characterizing these processes because of the enor-
mous range of time constants required to yield1/f behavior over a reasonable range
of frequencies. A ratio of time constants of106, for example, yields1/f behavior
only over four decades of frequency whereas a ratio of1012 offers 10 decades (Buck-
ingham, 1983, Chapter 6; see also Prob. 9.1 and Fig. B.6). Few systems aside from
semiconductors offer the requisite range of time constants.

Another way of mitigating the presence of power-law behavior is to assume that
an exponential cutoff ultimately prevails. In practice this often turns out not to be
the case, however. Indeed, von Schweidler (1907) himself carried out extensive
experiments seeking such a cutoff in the decay of charge in Leyden jars, but found
none.

2.8 UBIQUITY OF FRACTAL BEHAVIOR

2.8.1 Fractals in mathematics and in the physical sciences

The most comprehensive treatments of fractals have principally been in mathemat-
ics and the physical sciences. Extensive treatments have appeared, for example, in
the following books: Mandelbrot (1982); Feder (1988); Peitgen & Saupe (1988);
Schroeder (1990); Peitgen et al. (1997); Lévy Véhel et al. (1997); Turcotte (1997);
Turner et al. (1998); Flandrin & Abry (1999); Flake (2000); Barnsley (2000); Park &
Willinger (2000); Mandelbrot (2001); Falconer (2003); West et al. (2003). The appli-
cation of fractals in fields such as economics, finance, and hydrology is widespread
(see, for example, Mandelbrot, 1982, 1997; Mandelbrot & Hudson, 2004; Henry &
Zaffaroni, 2003; Montanari, 2003).
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Fractal analysis in the physical sciences proves highly important, as indicated by
the following examples:

• We are all keenly aware of the fractal geometry of nature, thanks to the seminal
work of Benoit Mandelbrot (1982).

• The noise in many electronic components and systems exhibits fractal behavior
at low frequencies (Sec. 5.4.1).

• Semiconductor layered structures comprising stacks of materials of different
bandgaps have been fabricated in the form of Cantor sets (Cantor, 1883), as well
as Fibonacci (1202), Thue–Morse (Thue, 1906, 1912; Morse, 1921b,a), and
Rudin–Shapiro (Rudin, 1959; Shapiro, 1951) sequences. Such nonperiodic,
deterministic structures can exhibit fractal electronic, thermal, and magnetic
properties (see, for example, Merlin et al., 1985; Kohmoto et al., 1987; Kolá̌r,
Ali & Nori, 1991; Dulea, Johannson & Riklund, 1992).

• Photonic materials and devices consisting of layers of materials with different
refractive indices have also been constructed in the form of Cantor sets, as well
as Fibonacci and Thue–Morse sequences (Jaggard & Sun, 1990; Kolá̌r et al.,
1991; Liu, 1997; Jaggard, 1997; Zhukovsky, Gaponenko & Lavrinenko, 2001).
For example, Hattori, Schneider & Lisboa (2000) suggested constructing a
fiber Bragg grating that takes the form of a Cantor set. Such nonperiodic and
deterministic photonic media can exhibit optical properties with unusual fea-
tures, including: (1) optical reflection and transmission with self-similar spectra
(Gellermann, Kohmoto, Sutherland & Taylor, 1994; Dal Negro, Oton, Gaburro,
Pavesi, Johnson, Lagendijk, Righini, Colocci & Wiersma, 2003; Ghulinyan,
Oton, Dal Negro, Pavesi, Sapienza, Colocci & Wiersma, 2005; Dal Negro,
Stolfi, Yi, Michel, Duan, Kimerling, LeBlanc & Haavisto, 2004); (2) complex
light dispersion (Hattori, Tsurumachi, Kawato & Nakatsuka, 1994); (3) band-
edge group-velocity reduction (Dal Negro et al., 2003; Ghulinyan et al., 2005);
(4) pseudo-bandgaps and omnidirectional reflection (Dal Negro et al., 2004);
and (5) light emission with uncommon spectral characteristics (Dal Negro, Yi,
Nguyen, Yi, Michel & Kimerling, 2005).

• Light scattered or refracted by passage through a random fractal phase screen
exhibits fractal wave properties (Berry, 1979; Jakeman, 1982); Berry (1979)
coined the termdiffractal to describe the resulting wave.

• Errors in telephone networks often occur as fractal clusters (Prob. 7.7).

• The photon statistics of̌Cerenkov radiation exhibit fractal characteristics under
certain conditions (Prob. 10.6).

• Analysis of the fractal statistics of earthquake patterns can assist in the predic-
tion of future earthquake occurrences (Prob. 10.7).

• Computer communication networks evolve into scale-free forms and the traffic
resident on these networks exhibit fractal characteristics (Chapter 13).
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2.8.2 Fractals in the neurosciences

There have been fewer comprehensive treatments of fractals in the biological sciences;
we explicitly note those of Bassingthwaighte et al. (1994), West & Deering (1995),
and Liebovitch (1998). Fractals play an important role in biological sciences such
as ecology (see, for example, Halley & Inchausti, 2004), which has often been a
breeding ground for novel mathematical approaches.

In this and the following section, respectively, we examine a number of examples
of fractal behavior in the neurosciences and in medicine and human behavior.

Power-law behavior is common in the neurosciences. Featured at levels from
the molecular to the organism, it is manifested in many systems. Neural systems
evidently benefit from the flexibility of being able to match the time scale of a current
stimulus while incorporating the memories of past stimuli. We present a number of
examples, emphasizing those that fall in the class of fractal-based point processes:

• Ion channels reside in biological cell membranes, permitting ions to diffuse in
or out of a cell (Sakmann & Neher, 1995). Power-law behavior characterizes
various features of ion-channel behavior (Liebovitch, Fischbarg & Koniarek,
1987; Liebovitch, Fischbarg, Koniarek, Todorova & Wang, 1987; Liebovitch
& Tóth, 1990; Liebovitch, Scheurle, Rusek & Zochowski, 2001; Läuger, 1988;
Millhauser et al., 1988). Many ion channels exhibit independent power-law-
distributed closed times between open times of negligible durations, and are
well described by a fractal renewal point process (Lowen & Teich, 1993c).
When the open times have significant duration, the alternating fractal renewal
process serves as a suitable model instead (Lowen & Teich, 1993c, 1995;
Thurner et al., 1997). Moreover, the time constant attendant to the recovery of
certain ion channels depends on the duration of prior activity in a power-law
fashion (Toib, Lyakhov & Marom, 1998).

• Fractal behavior exists in excitable-tissue recordings for various biological sys-
temsin vivo, from the microscopic to the macroscopic (Bassingthwaighte et al.,
1994; West & Deering, 1994). Membrane voltages vary randomly in time, of-
ten exhibiting Gaussian fluctuations with power-law spectra (Verveen, 1960;
Verveen & Derksen, 1968; Stern, Kincaid & Wilson, 1997; Lowen, Cash, Poo
& Teich, 1997a). Superpositions of alternating fractal renewal processes, rep-
resenting collections of ion-channel openings and closings, provide a plausible
model for this process (Lowen & Teich, 1993d, 1995).

• Communication in the nervous system is generally mediated by the exocyto-
sis of multiple vesicular packets (quanta) of neurotransmitter molecules at the
synapse between cells, either spontaneously (Fatt & Katz, 1952) or in response
to an action potential at the presynaptic cell (Katz, 1966). Neurotransmitter
packets induce miniature end-plate currents (MEPCs) at the postsynaptic mem-
brane, and their rate of flow exhibits fractal behavior such as power-law spectra,
that can be described by a fractal-based point process (Lowen et al., 1997a,b).
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• Power-law behavior characterizes the second-order statistics of action-potential
sequences in isolated neuronal preparations and isolated axons; the spectrum
often follows a form close to1/f over a broad range of frequencies (Musha,
Kosugi, Matsumoto & Suzuki, 1981; Musha et al., 1983). Moreover, the spike
rate in response to a step-function input in many sensory neurons follows a
power-law decay during the course of adaptation (Chapman & Smith, 1963),
frequently varying ast−1/4 (Biederman-Thorson & Thorson, 1971; Thorson
& Biederman-Thorson, 1974).

• Auditory nerve-fiber action potentials from essentially allin vivopreparations
display neural-spike clusters (Teich & Turcott, 1988) and fractal-rate behavior
over time scales greater than about 1 sec, under both spontaneous and driven
conditions (Teich, 1989; Teich, Johnson, Kumar & Turcott, 1990; Teich, 1992;
Teich & Lowen, 1994; Lowen & Teich, 1992a, 1996a; Powers & Salvi, 1992;
Kelly, Johnson, Delgutte & Cariani, 1996). This behavior could arise from
superpositions of fractal ion-channel transitions (Teich, Lowen & Turcott, 1991;
Lowen & Teich, 1993b, 1995) or via fractal-rate vesicular exocytosis (Lowen
et al., 1997a,b).

• As in the auditory system, spontaneous and driven visual-system action poten-
tials also exhibit fractal-rate characteristics. This behavior appears in all retinal
ganglion cells and lateral-geniculate-nucleus cells in the thalamus (Teich et al.,
1997; Lowen, Ozaki, Kaplan, Saleh & Teich, 2001), as well as in cells of the
striate cortex (Teich et al., 1996). Moreover, insect visual-system interneurons
generate spike trains with fractal-rate characteristics under both spontaneous
and driven conditions (Turcott, Barker & Teich, 1995). Motion-sensitive neu-
rons in the fly visual system adapt over a wide range of time scales that are
established by the stimulus rather than by the neuron (Fairhall, Lewen, Bialek
& de Ruyter van Steveninck, 2001a,b).

• Fractal features appear in action-potential sequences associated with many
central-nervous-system neurons operating under a broad variety of conditions,
including those in the cortex, thalamus, hippocampus, amygdala, pyramidal
tract, medulla, and mesencephalic reticular formation (see, for example, Evarts,
1964; Yamamoto & Nakahama, 1983; Yamamoto, Nakahama, Shima, Ko-
dama & Mushiake, 1986; Kodama, Mushiake, Shima, Nakahama & Yamamoto,
1989; Gr̈uneis, Nakao, Yamamoto, Musha & Nakahama, 1989; Grüneis, Nakao,
Mizutani, Yamamoto, Meesmann & Musha, 1993; Lewis, Gebber, Larsen &
Barman, 2001; Orer, Das, Barman & Gebber, 2003; Fadel, Orer, Barman, Vong-
patanasin, Victor & Gebber, 2004; Bhattacharya, Edwards, Mamelak & Schu-
man, 2005).

• Networks of rat cortical neurons contained in slice cultures exhibit brief neu-
ronal avalanches whose spatiotemporal patterns are stable and repeatable for
many hours; these power-law distributed structures may serve as a substrate
for memory (Beggs & Plenz, 2003, 2004).
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• Power-law behavior has a strong presence in the domain of sensory perception.
Although the transduction of a stimulus at the first synapse in a neural system
often follows a logarithmic form, stimulus estimation and detection are usually
characterized by power-law functions of the stimulus intensity with sub-unity
exponents (Stevens, 1957, 1971; Barlow, 1957; McGill & Goldberg, 1968;
Moskowitz, Scharf & Stevens, 1974; McGill & Teich, 1995).

• The natural course of forgetting in humans is well described by a decaying
power-law function of time (Wickelgren, 1977; Wixted & Ebbesen, 1991, 1997;
Wixted, 2004).

There appear to be many origins of fractal activity in the nervous system; power-
law fluctuations at the level of the protein may play an underlying role.

2.8.3 Fractals in medicine and human behavior

The quantitative analysis of the fractal characteristics of biomedical signals can yield
information that assists with the diagnosis of disease and with the determination
of its severity. This information, in turn, can have vital implications regarding the
appropriate treatment regimen, and can influence the outcome of treatment. We
provide a number of examples:

• Fractal analysis of the fluctuations in human standing (Musha, 1981; Shimizu
et al., 2002) reveals age-related changes not evident using conventional, non-
fractal methods (Collins et al., 1995). A different constellation of changes ap-
pears in Parkinson’s disease (Mitchell, Collins, De Luca, Burrows & Lipsitz,
1995). After correcting for age, the fractal dynamics of human gait (walking)
reveal the severity of Huntington’s disease in patients, and appear to correlate
with the degree of impairment (Hausdorff, Mitchell, Firtion, Peng, Cudkowicz,
Wei & Goldberger, 1997).

• Fluctuations in mood show evidence of fractal behavior in their spectra, which
display quantitative differences between bipolar-disorder patients and normal
controls (Gottschalk et al., 1995). That these fluctuations follow a fractal form
may lead to better methods for predicting and controlling mood disorders (see
Sec. 2.8.5).

• Evidence of fractal behavior in the spectrum of the human heartbeat has been
known for more than two decades (Kobayashi & Musha, 1982). Fractal meth-
ods do differentiate between normal and diseased patients with some degree
of success (Turcott & Teich, 1993; Peng, Mietus, Hausdorff, Havlin, Stanley
& Goldberger, 1993; Peng, Havlin, Stanley & Goldberger, 1995; Turcott &
Teich, 1996). However, nonfractal measures (based on a fixed time scale of
about twenty seconds) are superior for indicating the presence of cardiovascu-
lar dysfunction (Thurner, Feurstein & Teich, 1998; Thurner, Feurstein, Lowen
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& Teich, 1998; Ashkenazy, Lewkowicz, Levitan, Moelgaard, Bloch Thomsen
& Saermark, 1998; Teich et al., 2001).

• Fractal measures of activity have successfully quantified changes in the move-
ment patterns of laboratory rats induced by drugs of abuse (Paulus & Geyer,
1992), and these same fractal measures help improve the diagnosis of attention
deficit hyperactivity disorder (ADHD) in children (Teicher et al., 1996).

• Normal prenatal development may, in fact, require that fractal activity patterns
be established in the brain. Developmental disorders such as autism could
possibly result from a failure in the generation of these patterns (Anderson,
2001).

• Developmental insults, such as early abuse, quantitatively alter fractal parame-
ters measured in experimental animals (Anderson, 2001). Evidence also exists
that the fractal patterns of brain activity change with emotional state (Anderson
et al., 1999), with implications for psychiatric diagnoses.

2.8.4 Recognizing the presence of fractal behavior

Fractal activity directly influences how systems operate. It is therefore important to
recognize its presence, and to understand its features, so that system performance can
be properly evaluated and controlled.

For computer network traffic (see Chapter 13) and vehicular traffic, for example,
estimates of the fractal parameters provide measures of performance and useful de-
sign guidelines. Detailed analysis of fractal activity has proven to be indispensable.
Dealing with fractal behavior in a system is not a trivial enterprise, however. Even
seemingly simple tasks, such as calculating the mean and variance of the rate for
a fractal process, offer unique challenges. The low-frequency nature of the noise
indicates that nearby values are highly correlated so that obtaining reliable estimates
often requires a prohibitive number of samples (see Chapter 12).

In some cases, fractal behavior serves as a source of unavoidable noise that dimin-
ishes system performance. An example is1/f -type noise in electronic components
and circuits (see Sec. 5.4.1). The presence of fractal noise places restrictions on the
information throughput of such systems, the calculation of which requires fractal
analysis.

Finally, it is important to recognize the possible presence of fractal noise to avoid
drawing erroneous conclusions. A case in point is the landmark study conducted by
Fatt & Katz in 1952, in which the authors carried out an investigation of the statistical
behavior of sequences of miniature endplate currents (MEPCs) at the neuromuscular
junction. In the course of describing the methods used to analyze their data, they
carefully noted that each segment of data selected for analysis was sufficiently short to
exclude, as they put it, the “occasional occurrences of short high-rate bursts” of events,
and to avoid “progressive changes of the mean.” In fact, fractal-rate fluctuations
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do exist in exocytic behavior and MEPCs (Lowen et al., 1997a,b), and the MEPCs
observed by Fatt & Katz (1952) almost certainly exhibited such behavior (see Lowen
et al., 1997b, for an analysis). Unaware of the presence or importance of these
fluctuations, however, they removed most traces of them by selecting relatively short
segments of data for analysis and, moreover, chose precisely those segments that
exhibited minimal fluctuations. The observation of fractal-rate behavior requires
long data sets, and the presence of both bursts and apparent trends lie at its very core.

2.8.5 Salutary features of fractal behavior

Fractal behavior is ubiquitous and its study reveals much about our surroundings. We
discover, for example, that natural scenes and natural sounds exhibit fractal properties
in space and time, and sensory systems have adapted to this property (Musha, 1981;
Teich, 1989; Dan, Atick & Reid, 1996; Taylor, 2002; Simoncelli & Olshausen, 2001;
Yu, Romero & Lee, 2005).

Given the ubiquity of fractal activity, what biological advantages might accrue
from its presence?

Fractal behavior offers tolerance to noise and errors. The deleterious effects of
noise diminish in importance because the concentration of power at lower frequencies
assures increased predictability. New scales introduced by errors are less disruptive
in fractal processes since they already exist in the initial distributions (West, 1990).
Scale-free networks are robust against accidental failures, as pointed out in Sec. 2.7.8.
Moreover, the presence of fractal noise can serve to optimize the throughput of a
system, with examples in both neural signaling and vehicular traffic (Ruszczynski,
Kish & Bezrukov, 2001).

Developmentally, internally generated fractal signals [such as neural signals arising
during rapid-eye-movement (REM) sleep] provide a prenatal stimulus that mimics
natural signals and assists the brain in developing normally. An animal can thus
emerge at birth with its visual system attuned to the world it enters (Anderson, 2001).
Search patterns executed by animals and by humans, which often have fractal prop-
erties (Cole, 1995; Viswanathan, Afanasyev, Buldyrev, Murphy, Prince & Stanley,
1996; Aks, Zelinsky & Sprott, 2002), appear optimal given the likely distributions of
targets.

Finally, the salutary features of fractal behavior in medicine have been documented
in a number of cases. When used for relieving pain via transcutaneous electrical
nerve stimulation,1/f noise outperforms white noise (Musha, 1981). This is also
true for sensitizing baroreflex function in the human brain (Soma, Nozaki, Kwak &
Yamamoto, 2003). The flexibility of response offered by fractal behavior may also
serve as a harbinger of health (see West & Deering, 1995).
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Problems

2.1 Fractal and nonfractal objects Comment on the fractal properties, or the lack
thereof, in each of the following:

1. the aorta, all the arteries it branches into, the arterioles, and the capillaries in a
rabbit;

2. a tree trunk and all its branches and twigs, as visualized in the winter when it
is devoid of leaves;

3. a lock of hair;

4. a brick;

5. a sand dune in the Namibian desert, without vegetation;

6. a cumulus cloud;

7. the Himalayan mountains;

8. the path of a curve ball thrown by a major-league baseball pitcher;

9. a randomized version ofC3 — we generate the third iteration towards the
Cantor set, which contains eight segments, but add an independent random
value uniformly distributed over[−0.01, +0.01] to the beginning and ending
value of each segment.

2.2 Logistic to tent map Consider the logistic map, Eq. (2.20), withc = 4, as
studied in Sec. 2.6.2.

2.2.1. Show that the substitution

y ≡ π−1 arccos(1− 2x) (2.31)

converts Eq. (2.20) into a tent map (Schroeder, 1990, p. 291):

yn+1 =
{

2yn 0 ≤ yn ≤ 1
2

2− 2yn
1
2 < yn ≤ 1.

(2.32)

2.2.2. Find the ratio|εn+1/εn|.
2.3 Cantor variant Imagine a variant of the Cantor set described in Sec. 2.4.1,
denotedC′. At each stage in the construction of the variant set we remove the middle
half of each remaining interval. Thus, the intervals

[
0
4 , 1

4

] ⋃ [
3
4 , 4

4

]
comprisethe

resultC′1 after the first step in its construction.
2.3.1. What total length (Lebesgue measure) remains in the limiting setC′?
2.3.2. How many points remain inC′ compared with the original unit interval?
2.3.3. What value ofD0 doesC′ have?
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2.4 Cantor-set membership Consider the pointx = 0.002002 . . .3, where the
subscript3 indicates a ternary expansion.

2.4.1. To what fraction doesx correspond?
2.4.2. Doesx belong to the endpoints ofC?
2.4.3. Doesx belong to the interior ofC (in other words, inC but not an endpoint

of it)?
2.4.4. DoesC contain irrational numbers?

2.5 Scaling solution Show that Eqs. (2.5) and (2.6) form the only solution to
Eq. (2.4) for arbitrarya andx.
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